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ABSTRACT 

Dynamic substructuring is widely used in structural 
dynamics, where the complexity of large models prevent 
a direct modal solution of the full model in FE (Finite 
Element) analysis. Since the seventies, a standard method 
has been established using the Craig-Bampton method, 
which efficiently reduces parts of an assembly to a 
predefined number of internal modes and coupling DOF 
(degrees of freedom) at a fixed boundary. The main 
advantage of the method is its ease of use, which made it 
so popular. With increasing complexity of assembled 
models and raising frequency ranges, one important 
drawback of the Craig-Bampton method became more 
painful, i.e. the fixed boundary. Although methods exist 
to reduce part models with free boundaries they are 
hardly applied, because they are not easy to use. 
 
 
1. USE OF DYNAMIC SUBSTRUCTURING 

The use of dynamic substructuring facilitates the 
manipulation of large and complex structures by splitting 
the finite element model into several substructures. The 
condensation of each substructure allows having a 
reduced assembled model and decreases significantly the 
cost of calculation for dynamic analysis. 
 
This approach is widely used in the frame of dynamic 
launcher applications. For coupled dynamic analysis of 
launch vehicle with payloads, the condensation method 
gives a high reduction of the launcher model size and 
allows the calculation of a huge number of variants in an 
affordable time (typically several hundreds of payload 
configurations), since the main computational effort is 
spent once during the condensation process. 
 
Some additional applications with dynamic 
substructuring are the local analysis of main components 
like stages where the surrounding environment is a 
reduced model of the launcher in order to provide 
realistic boundary conditions at the component level. 
 
Other use of dynamic reduction is for the MBD (Multi-
Body Dynamics) analysis, where the focus lies on the 
smallest number of modes with highest accuracy of the 
modal basis. 
 

2. USUAL CONDENSATION METHODS 

There are numerous methods from the literature for 
dynamic reduction of substructures. As a first step, 
condensation methods need to partition substructures. 
 
The degrees of freedom (DOF) of a substructure split into 
two parts as in Fig. 1: 
-  The interface DOF, or external DOF, or Coupled 

DOF, which link to the assembled model and could 
connect with surrounding structures. 

-  The internal DOF or Local DOF, which remain 
internal to the substructure and cannot connect with 
others structures.  

 
Figure 1. The substructure partitioning 

 
Then the partitioned equation of motion of the isolated 
substructure is as follows (damping aspects not 
mentioned for simplification): 
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M, K, u, F are the mass matrix, the stiffness matrix, the 
displacement vector and the load vector, respectively, 
according to finite element theory. 
 
The basic idea of the condensation method is to reduce 
the size of the substructure to the interface DOF by an 
appropriate transformation: 
 

FTuTKTuTMT t
C

t
C

t =+   (2) 
 
with T  as transformation matrix. 
 

Interface DOF 
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2.1 Static reduction 

The static reduction (or the condensation of Guyan [1]), 
is the base of the condensation methods. It is simply 
deduced from the static analysis: 
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Under certain conditions (i.e. the interface DOF must 
form a statically determinate support), the second row 
from this last equation expresses the local displacement 
as function of the interface displacements:  
 

LLLCTLLLCLCLLL FKuBFKuKKu 111 −−− +−=+−=   (4) 
 
BT is the restitution matrix. The first row from the 
equation (3) gives the formulation of the reduced system: 
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Then, the expression of the transformation matrix T is as 
follows: 
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The static reduction gives an exact representation of the 
stiffness at the interface DOF, but the reduced stiffness 
matrix is almost fully populated. Thus, this method is 
efficient if the number of interface DOF remains small 
against the number of local DOF. The main 
computational effort in the reduction process is spent for 
the inversion of stiffness matrix for local DOF. 
 
2.2 Dynamic condensation  

For dynamic application, the static condensation gives 
inaccurate results with a high reduction scheme, where 
the transformation matrix produces an approximate 
reduced mass matrix.  
 
In order to improve this situation, the dynamic reduction 
method of Craig-Bampton [2] extends the 
transformation matrix with normal eigenmodes of the 
substructure as follows: 

 
ηLCTL XuBu +−≈   (7) 

 
with XL as normal eigenmode shapes from the 
substructure with clamped boundary conditions at the 
interface DOF and η the associated modal DOF. The term 
‘-BT’ associated to the physical DOF is called the 
constraint modes. 
 
This relation (7) depends on the number of normal modes 
used. Thus, the accuracy of this reduction is linked to  
modal truncation. 

 
The expression of the transformation matrix T is now as 
follows: 
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One interesting point of such method is the K-
orthogonality of constraint modes with the normal 
clamped modes, which provides a consistent 
transformation matrix without any internal linear 
combination. Then, the transformation of the equation of 
motion from the expression (1) becomes as follows: 
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where  Mred  and  Kred  are the reduced mass and stiffness 
matrices on the interface DOF (identical from those given 
by Guyan’s reduction), MηC the modal coupling mass 
matrix, and Λ the diagonal matrix of eigenvalues from 
clamped normal modes. 
 
This method is simple to set up from the theoretical point 
of view and easy to use for the following reasons: 
- This reduction does not lead to a rank deficiency 

problem. 
- For static applications, this method simplifies itself 

into the Guyan’s reduction, which provides the same 
stiffness at the interfaces DOF as that from the 
uncondensed model. 

- For clamped vibrations at the interface DOF, the 
reduced model gives the same results as those from 
the uncondensed model. 

- This method allows a high reduction level with few 
interface DOF. 
 

From practical applications, such method gives stiffer 
results, and as the rule of thumb, the frequency limit for 
the normal clamped modes has to be two times higher 
than the analysed frequency of the assembled model. 
 
Since this method uses a formulation with interface 
displacements (constraint modes), the connections 
between substructures remain natural and this reduction 
is in phase with the finite element method, where the 
substructure is seen as a ‘super-element’.  
 
The main advantage of the method is the ease of use, 
which made it so popular. 
 
2.3 Current limitations and overview 

Although the method of Craig-Bampton has interesting 
properties, there are some limitations in the treatment of 
complex models mainly due to the use of clamped 
internal modes in the following cases: 
- For the behaviour of flexible substructures, the 

approximation by clamped internal modes could be 
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very poor and needs to raise the frequency limit of 
internal eigenfrequencies (three times or more 
against the analysed frequency). 

- Such reduced model show a low convergence in 
dynamic analysis with free boundary conditions. 

- The reduction of large substructure (like a launcher 
without the payloads) could need a very huge 
computational effort in order to reach the frequency 
limit. 

- The reduction of large substructure with clamped 
boundary condition, like the condensation of a 
complete launcher at the payload interface, may lead 
to numerical inconstancies for dynamic response. 

- This method gives a bad or no convergence with 
multiple interfaces (launcher with 2 payload 
interfaces). 

 
There are numerous alternative dynamic reduction 
methods in the literature, for example [3]: 
- Methods with clamped interfaces (Hurty, Craig-

Bampton…) 
- Methods with free interfaces (MacNeal, Rubin…) 
- Methods with mixed boundary interfaces (Hintz…) 
- Methods with loaded component modes (Benfield-

Hruda) 
 
Such methods carry some new advances but also have to 
tackle with different problems: 
- Some interfaces of a reduced model cannot accept 

unsupported constraints, which prevent the use of 
free interface reduction. 

- Some methods use the forces at interface DOF 
instead of the displacements, which need a specific 
treatment for the connection between substructures. 

- Some of them have a limited range of applications 
and are considered as expert methods. 
 

 
3. MIXED BOUNDARY CRAIG-BAMPTON 

METHOD  

In order to improve the method of Craig-Bampton, the 
basic idea is to allow such method to handle any kind of 
internal eigenmodes. The use of a set of normal modes 
with the best adapted boundary condition will improve 
the convergence as well as the accuracy of the condensed 
models. 
 
The expression of the transformation matrix T becomes 
as follows: 
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Where the modal restitution matrix TLη contains the 
information of internal modes calculated with any kind 
of boundary constraints. This matrix is built in a specific 
way to avoid internal linear combinations and to keep the 
property of K-orthogonality with the constraint modes, 
which ensures a consistent transformation and avoid the 

generation of a rank deficiency problem. 
 
This formulation keeps the same architecture as the 
method of Craig-Bampton and conserves the properties 
linked to the constraint modes (like static reduction, 
connection via interface displacements). 
 
This method was implemented in the PERMAS FE 
Software [4] under the name ‘Mixed Boundary Craig-
Bampton’ method (MBCB) and it is seen as a natural 
extension of the method of Craig-Bampton with the same 
ease of use. 
 
The next paragraphs will describe the different 
possibilities for the selection of normal eigenmodes. 
 
3.1 Component modes reduction 

The normal eigenmodes used for the reduction are built 
from the substructure level. In this case, the available 
boundary conditions are: 
- Interfaces with fixed-boundary conditions, 
- Interfaces with free-boundary conditions, 
- Interfaces with mixed boundary conditions. 

 
It is also possible to use a hybrid set of normal modes 
which could contain clamped modes and free modes. 
 
In addition, the expansion of the normal mode basis with 
additional static mode shapes, allows the incorporation of 
any kind of specific modes, like those coming from the 
modal truncation augmentation method [5], in order to 
improve the accuracy of internal displacements. Such 
modes could be the static deflections from internal loads 
and the inertia relief attachment modes. 
 
As it will be shown in chapter 4, this method converges 
exactly to the all-clamped boundary solutions with 
normal clamped eigenmodes (Craig-Bampton) but also to 
the all-free boundary solution with normal free 
eigenmodes. 
 
3.2 Loaded component modes reduction 

With the component mode reduction, the normal modes 
used for the reduction are built from the substructure 
level independent of the environment of this component. 
But in the assembled model, the substructure has some 
‘elastic’ connections with surrounding parts.  
 
With the loaded component modes reduction, the 
displacement shapes used for the reduction are the 
eigenmodes of the assembled model (substructure 
connected with other flexible components) projected to 
the substructure itself. An example is shown in Fig. 2. 
 
But this projection involves that this set of displacement 
shapes is no longer linearly independent, since elastic 
eigenmodes from assembled model could have a quasi-
rigid shape or could be collinear in the substructure 
region. Such singular or collinear displacement shapes 
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are detected and removed before reduction. 
 

 
 

Figure 2. Loaded component mode 
 
 
The component modes reduction is seen as a specific case 
of the loaded component modes reduction, which leads 
to a general formulation of the Mixed Boundary Craig-
Bampton method. 
 
 
4. NUMERICAL EXAMPLE: DRY TANK 

This small example will show the component modes 
reduction. The structure is a cylindrical dry tank (height 
2m, diameter 2m) with spherical end caps and short skirts 
ended by circular flanges. The finite element model, 
described in Fig. 3, has 18 nodes on its circumference and 
it is composed of linear shell elements and linear beam 
elements for the flanges. 
 

 
Figure 3. FE model of the dry tank 

 
The eigenfrequencies are calculated up to 600 Hz. Table 
1 shows the different boundary constraints to be 
analysed. 
 

Constraints variants Upper interface Lower interface 
FREE-FREE Free Free 

CLAMPED-FREE Free Clamped 
CLAMPED-CLAMPED Clamped Clamped 

 
Table 1. Analysed constraints variants 

 
 

Table 2 describes the different condensed models, which 
are reduced at lower and upper interfaces identically. 
 

Models Method Internal modes Frequency 
CB Craig & Bam. 165 clamped modes 1200 Hz 

CBGEN MBCB 81 free modes 
6 inertia modes 

  650 Hz 

CBGEN-V MBCB 
81 free modes 

21 clamped modes 
6 inertia modes 

  650 Hz 
  600 Hz 

 
Table 2. Reduction schemes of dry tank 

 
 

 

 
Figure 4. Comparison between reduction methods 

 
The eigenfrequencies are compared to those given by the 
uncondensed model and the results are reported in the 
following curves (see Fig. 4). The worst cases are 
summarized in Table 3. 
 

Models Modal DOF Worst case Maximal 
deviation 

CB 165 FREE-FREE 0,80% 
CBGEN 81 CLAMPED-

CLAMPED 0,16% 
CBGEN-V 108 CLAMPED-FREE 0,04% 

 
Table 3. Worst cases for condensed models 
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Like the Craig-Bampton reduction, which gives the exact 
solution for the CLAMPED-CLAMPED variant, the 
MBCB condensation with free normal eigenmodes gives 
also the exact solution for FREE-FREE variant. 
 
The reduction with free eigenmodes (CBGEN) shows 
better results against the Craig-Bampton method with 
less modal DOF. 
 
 
5. APPLICATION WITH LAUNCHER MODEL 

5.1 Launcher A5GS – EAP stage separation 

This model which represents the launcher A5GS, was 
developed by AIRBUS-DS, Les Mureaux, France. This 
application will show the loaded component mode 
reduction applied to a large component. 
 

Figure 5. A5GS - Launcher reduction schemes 
 
 
The goal is to compare the first 1250 coupled fluid-
structure eigenfrequencies with free-boundary conditions 
from the following models:  
- Reference launcher model with no condensation. 
- Condensed launcher model with the method of 

Craig-Bampton and 2500 internal clamped 
eigenmodes (CB). The reduced model is built 
without the payload component and has only one 
interface with the payload. The internal eigenmodes 
are calculated with clamped boundary conditions at 
the payload interface. 

- Condensed launcher model with the MBCB method 
and 1250 internal eigenmodes (CBGEN). The 
CBGEN model is built without the payload 
component and has interfaces with the payload, the 
fairing, and the connection points from EAP (Etage 
d’Acceleration à Poudre) boosters. The internal 
eigenmodes used for the condensation came from the 
reference launcher model (loaded component modes 
reduction). 

The curve of eigenfrequencies with the index of mode 
from the reference launcher model is plotted in Fig. 6. In 
addition, the differences between the eigenfrequencies 
from the reference mode with those from the CB model 
and also with those from the CBGEN model are plotted in 
the same figure. 
 
These results show a superior convergence from the 
MBCB method using the loaded component modes with 
less modal DOF and a maximum error less than 0.01%. 
For the method of Craig-Bampton, the maximum error is 
less than 3%. 
 

 

 
 

Figure 6. A5GS - Comparison between reduction 
methods 

 
 
5.2 Launcher A5E/CA – Pressure oscillations from 

the first acoustic mode 

This model which represents the launcher A5E/CA, was 
developed by AIRBUS-DS, Les Mureaux, France. This 
application will show the loaded component mode 
reduction applied to a multi-levelled assembly model. 
 
The goal is to compare the first 800 coupled fluid-
structure eigenfrequencies up to 80 Hz with free-
boundary condition from the following models:  
- The reference launcher model with no condensation. 
- The condensed launcher model divided in several 

reduced substructures with the method of Craig-
Bampton using clamped eigenmodes up to 200 Hz 
(CB). 
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- The condensed launcher model divided by the same 
reduced substructures but with the MBCB method 
using the 800 coupled eigenmodes from the 
reference launcher model (loaded component modes 
reduction) (CBGEN). 

 
For the condensed models, the launcher is split into 
several substructures in the following way (see Fig.7): 
- Booster components (EAP), 
- Main liquid stage component (EPC), 
- Engine component, 
- Upper liquid stage component (ESC), 
- Upper part with no condensation. 

  

 
Figure 7. A5E/CA - Launcher reduction scheme 

 
The internal eigenmodes used for the different reduced 
substructures are detailed in Table 4. 
 

Reduced 
component 

Craig-Bampton method 
Clamped modes ≤  200 Hz 

MBCB method 
Modes from the reference 

model ≤ 80 Hz 
EAP (x2) 550 173 retained modes 

ESC 500 272 retained modes 
EPC 1 800 612 retained modes 

ENGINE 250 204 retained modes 
Sum of modal 

DOF 3 650 1 434 

 
Table 4. AE/CA – Modal DOF 

 
The curve of eigenfrequencies with the index of mode 
from the reference launcher model is plotted in Fig. 8. In 
addition, the differences between the eigenfrequencies 
from the reference mode with those from the CB model 
and also with those from the CBGEN model are plotted 
in the same figure. 
 
These results show a superior convergence from the 
MBCB method using the loaded component modes with 
less modal DOF and a negligible maximum error. For the 

method of Craig-Bampton, the maximum error is about 
0.2%. 
 

 
Figure 8. A5E/CA – Comparison between reduction 

methods 
 
 
6. CONCLUSION 

In order to overcome the limitations of the Craig-
Bampton method in dynamic substructuring, an 
extension to free and mixed boundaries has been 
proposed. The Mixed Boundary Craig-Bampton 
(MBCB) method keeps the model reduction easy to use 
and improves the accuracy of the reduced models. 
 
As shown by two launcher examples, the MBCB method 
is working for pure structural models and coupled fluid-
structure models, where enclosed fluids are physically 
coupled with the surrounding structure.  
 
Finally, it is obvious that the MBCB method will not only 
improve dynamic FE analysis but also MBD analysis 
using flexible part models. 
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