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Summary:

Rotating parts can be found in many mechanical productsrikehicles, airplanes, ships, machine tools. Because
rotors are never perfect, imbalances are generating iobsatvhich not only excite the rotor itself but also other
joint non-rotating parts. This coupling of rotating and noating parts is an important point for virtual product
development of parts with rotors.

First, the principles of modeling and analysis of rotors r@ngsited and usual post-processing features of rotor
analysis results are shown. Second, an example for a joutdtste with rotating and non-rotating parts is used
to demonstrate the coupling effect. In particular, soumiatéon from non-rotating parts due to imbalances of the
rotor will be considered.
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1 Introduction

Finite element technique has become a popular tool in rgt@nehic analysis.

Dynamic studies of rotating machines are generally peréarmsing, on the one hand, beam element models
[11, 16] representing the position of the rotating shaft,amdthe other hand, three-dimensional solid rotor-stator
models [8, 13, 14]. Axisymmetric models are used by [11]. Adgfic advantage of solid models is the inclusion
of stress stiffening, spin softening, and temperaturectffie the rotor dynamics analysis. Nowadays CAD models
of rotors becoming more and more detailed. The tedious ame-tionsuming task of building equivalent beam
models is omitted by using solid models.

Rotor lateral vibration (sometimes called transverse owfi@ vibration) is perpendicular to the axis of the rotor
and is the largest vibration component in most high-speechimary [10]. Understanding and controlling this
lateral vibration is important because excessive latebahitions leads to bearing wear and, ultimately, failure. |
extreme cases, lateral vibration also can cause the rgtadiris of a machine to come into contact with stationary
parts, with potentially disastrous consequences [10, 12].

All FEM computations are carried out in PERMAS [1]. PERMASesjfic commands are highlighted by a pre-
ceding dollar sign and capital letters in the subsequettiosec

2 Governing Equations

Only linearized systems are considered here, i.e. onlylsvaahtions of the rotational velocity is possible.
Rotating systems may be processed in a stationary refefeme as well as a rotating reference frame.

In the following, we will focus on an inertial reference framThe additional matrices due to rotating parts must
be taken into account and are requested by a so-called $ADIRWAdata block within the $SYSTEM block.

The complex eigenfrequencies of a rotor on fixed supportdetermined. The structure is described with respect
to a fixed reference frame, i.e. shaft and discs rotate witbrstant rotational speed, whereas the bearings are
supported and fixed to ground. All displacements, frequemnetc. refer to the fixed coordinate system. At one

end, the rotation is suppressed to represent a drive witstantirotational speed.

The first computation step is a static analysis for the basidehto determine the stress distribution under cen-
trifugal loads. It is a prerequisite for the calculation lo¢ tgeometric stiffness matrikC .

The next step is the calculation of real eigenmo@es= | =1 ...z, |, including geometric and convective

stiffness matrices:
A1

MX=(K+K,+K.)XA, A= . (1)
Ar
The governing equations of motion that describes a rotdesy# a stationary reference frame is given by

Miu+ (D+Dy(Q)+G) i+ (K+ KyQ) + K, + K.) u=R(t), 2

whereM denotes the mass matrik) viscous damping matrix; (2) speed-dependent bearing viscous damping
matrix, G gyroscopic matrix,K . convective stiffness matrixk, geometric stiffness matrixf, () speed-
dependent bearing stiffness matrix and

Material damping H of the stator is replaced by an equivalent viscous dampitigetime-domain.

Including convective stiffness requires the use of a comsisnass matrix, which is the default formulation begin-
ning with version 14.

The equations of motion (2) are transformed into modal spggaeans of
u=Xn )

Additional pseudo mode shapes may be added to enrich thel smatze. This is realized by $ADDMODES.

Mﬁ+(1~)+é)h+<}?+?¥g+fﬁ)n:fz(t) @)
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By introducing¢ = 7 the second order form (4) is transformed into a state-spaoe f

ERIDE e R ) HEC O

To analyse rotating models two different coordinate systean be used in PERMAS, stationary and rotating.
By using a stationary reference frame the model can haverbtdting parts and stationary parts. However, the
rotation parts have to be axisymmetric. Moreover diffe@rhponents can rotate with different rotational speeds.
A stationary reference frame is activated by

$ADDMATRIX
GEOSTIFF CONVSTIFF GYRO

The rotational speed is defined in the loading definition daéispre-run by SINERTIA ROTATION. Additional
matrices are build for that reference speed.

The modelling of a rotating machine requires a skew-symmpseudo-damping matrix named gyroscopic ma-
trix. The particular form of the matrix makes complex eigemtes appear, forward modes having increasing
frequencies and backward modes having decreasing freigsenc

Critical speeds, stability and unbalance response wetaatea in the operating speed range.

2.1 Bearings

To a greater or lesser extent, all bearings are flexible dreatings absorb energy. For most types of bearing, the
load-deflection relationship is nonlinear. Furthermooad deflection relationships are often a function of shaft
speed. Speed-dependent bearings are idealized by CONT&6&Ménts and multipoint constraints of type $MPC
WLSCON.

2.2 Damping

Identical damping specifications lead to different efféntfixed or co-rotating reference systems. In an inertial
reference frame material damping is not suitable for ragaparts, whereas modal damping represents any kind
of external damping. Discrete damping elements can be wsedddelling damping in bearings.

2.3 Unbalance

In all rotating machinery, some degree of mass unbalande#ya present. The unbalance load acts as a harmonic
load in an inertial frame, i.e.
F, | 9 | cosQt
[Fy ]—meQ { sinQt |’ (6)

The balance quality grades for various groups of represeateagid rotors can be found in ISO 1940/1 and is
defined as the product of a specific unbalangemm and the angular velocity in rad/s of the rotor at maximum
operating speed:

G=¢e. @)

3 Examples

3.1 Gas Turbine

The first example is taken from the literature [9]. Howeverwit use a solid model instead of a Timoshenko
beam model. The solid model consists of 48372 hexahedra@@identahedra elements. Fig. 1 shows the mesh
of the rotor model. The front and rear bearing are located-at0.04 m andz = 0.7 m, respectively. The rotor
consists of 6 discs and a hollow shdft£ 0.78 m). Details concerning the physical and geometrical datebea
found in [9].
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VisPER (Visual PERMAS) is used for model validation and postessing tasks [3]. Medina is applied to generate
the finite element mesh [5].

¥

Fig. 1: Simplified rotor model of a gas turbine

Fig. 2 illustrates the characteristic of the frequencyeatefent isotropic bearings.

Front bearing
T

14400 T T —0.040

S | = D I I gy
s ] : : p : : E
= 14000+ : T T R fencmnmnranaiEes —"—‘70.030%
= ; : : : ; ]
=) 13800 s i beisasienyiseniingg T R e do.025 £
o * . ; . —e = s
(1] : k ! t =
c ; ; ; : | 2
i 7. (o T e s o s 40.015 E
ﬁ : : : 8

13200_ --40.010

. I i I
Bt 0 100 200 300 400 5('.)0(}'005
Rear bearing

14000 T T T 10
12000 | TN b b b 19 =
£ : ; i : ; 18
E 10000 F+ e B s T
= i : : : : 17 &
S ol ]y ) 3
O & 5 3 F 15 £
£ s Eremmmonspa s s b 2 g
= ; ; : ; ; 14 g

e e S E . S s PR 5 o

1 L 1 L 1 L
2000 0 100 200 300 400 5002

Fig. 2: Frequency-dependent coefficients of the bearings
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3.1.1 Strain energy distribution

The strain energy distribution of the different parts of thtor is illustrated in Fig. 3. Each colum represents an
eigenfrequency of the rotating system. Bending modes aasavise due to the symmetry of the rotor-bearing
system. The third and sixth column represent torsional metlapes. The first two bending modes are dominated
by the rear bearing, whereas the front bearing participatesodes 4,5 and 7,8 respectively. Modes 11 and 12
exhibit axial modes of the shaft and discs. The elastic disake a contribution to the strain energy density at
higher modes, while the lower modes are dominated by thewahaft.
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Fig. 3: Strain energy distribution

3.1.2 Campbell Diagram

In order to get the relation between eigenfrequencies aatioaal speed an automatic procedure called $SMODAL
ROTATING is available which directly generates all eigenvas. A mode tracking algorithm is implemented in
order to sort the complex eigenvalues.

The Campbell diagram is depicted in Fig. 5. Solid lines desdhe eigencurves computed by PERMAS while
the dash-dot lines corresponds to the beam model studied].inTprsional modes are not present in the beam
model. Besides the 3rd forward whirl all eigencurves aredadyaccordance with the results of the beam model.
However, they share the feature of a strong variation wittieasing rotor speed. The deviations within the
Campbell diagram can be explained by the different moddimgroaches. The beam model tends to be stiffer
than the solid model especially for higher modes.

The first critical speed corresponding to the first forwardriffFW) is at 51 Hz and a second critical speed related
to the second forward whirl is gt = 150 [Hz].

Nelson [15] showed that the backward mode vector is orthalgorthe unbalance vector and, as such, energy can-
not be fed into the backward whirl. Therefore, critical spgeare restricted to forward whirl in case of symmetric
rotors.

In order to judge the stability, the equivalent dampingarati
9,

—— ®)
\/ 07+ w?

is evaluated. The system is stables;if> 0V j. This condition is obviously satisfied here (s. Fig 4).

§=—
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Fig. 5: Campbell Diagram of the rotor-bearing system
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3.1.3 Unbalance

A mass unbalance dfdo—* kg m situated at the single disc at node 21 of the finite elemetel is applied in
the numerical analyses. Fig. 6 illustrates the amplitudestd a mass unbalance at different nodes. The peak

corresponding to the first critical speed is missing, sit@edamping of the rear bearing (Fig. 2) attenuates the
response.
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Fig. 6: Unbalance responses at certain nodes of the rotor-being system

The dynamic reaction forces of the bearings are depictedin/~
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Fig. 7: Dynamic bearing forces
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3.2 Bench grinder

A bench grinder is a type of benchtop grinding machine usellite abrasive wheels [7]. Depending on the grade
of the grinding wheel it may be used for sharpening cuttirgdtsuch as lathe tools or drill bits.

Alternatively it may be used to roughly shape metal prior &ding or fitting. Grinding wheels designed for steel
should not be used for grinding softer metals, like alumimihe soft metal gets lodged in the pores of the wheel
and expand with the heat of grinding. This can dislodge gie@f¢he grinding wheel.

The CAD model of the bench grinder is available through Gaalj6].

Fig. 8: Bench grinder: Diameter of grinding wheel D = 123mm

Itis an established fact that the casing has an effect onyth@mlics of a rotor. Therefore, the interaction between
th dynamics of the rotor with that of the casing is an esskasipect of the rotor dynamics. Therefore, all analyses
are performed for the coupled system including the nontir@gand rotating part, respectively.

3.2.1 Speed-dependent bearings

A diagonal stiffness matrix
K, (Q) =diag| f2001(2) f2002(2) fa002(2) 0 10° 10° | 9

is assumed for the bearings - hence cross coupling effextseglected. The functiongg: . f2002 in equation (9)
are illustrated in Fig. 9.
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Fig. 9: Speed-dependent bearing stiffness

In addition a constant viscous damping matrix
D, =diag[ 0.5 1.0 1.0 le-5 20 2.0 | (10)
is used within the simulations.

The unbalance forces are assumed to be concentrated fotbescanter of gravity of each grinding wheel.

3.2.2 Centrifugal load

The displacement under centrifugal loads is illustrateBign 10. The static pre-run is necessary to compute the
additional matrices due to rotation.

Fig. 10: Displacement field due to a centrifugal load
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The Campbell diagram is shown in Fig. 11
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Fig. 11: Campbell diagram of the bench grinder

3.2.3 Sound radiation

Sound radiation power (densities) may be computed aftergemealue analysis, a frequency response or a time
history analysis in PERMAS. The results are generated fahall, membrane, so-called LOADA and FSINTA
elements. The sound radiation power density is proportimna

7% = %/vidA, (11)

wherew,, is the normal velocity of the vibrating surface. The resaithie mean square value of the element velocity
normal to the element surface.

The unbalance response of the bench grinder is presentéccgtles/s (s. Fig 12).
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Fig. 12: Sound radiation power density atf = 50.0 [Hz]
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4 Conclusions

A complete rotor dynamic analysis was successfully peréafrand verified by an example from the literature.
Typical results such as Campbell diagram, dynamic beaongeé due to an unbalance load, and critical speeds
were evaluated. The second example addressed the rdtrdist@raction of a bench grinder. In addition the
sound radiation power is computed for rotating and nontirgarts of the structure.

Possible extensions of the presented material include:

» Design of lightweight rotating structures at high speesfsuires a deep knowledge of rotordynamics to
avoid excessive vibration in the operating speed rangethi®reason it becomes obvious to use optimiza-
tion techniques [17] in order to reduces stresses, displants, etc. For this purpose PERMAS provides
different modules such as topology, sizing and shape ogditioin. Various design constraints like $DCON-
STRAINT WEIGHT, FREQ, CAMPBELL, CFREQ, NPSTRESS, ELSTRE$Savailable to optimize the
structure with regard to the above-mentioned constraiittsowt the need to integrate an external optimizer
in the process chain. Furthermore a positioning optimizais disposable.

 Further aspects such as critical speed maps, where tlwaksipeeds are plotted as a function of the bearing
stiffness in a semi-logarithmic manner, are important foetier understanding of rotor-bearing systems.
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